References

APA. (2020). Publication manual of the American Psychological Association (7th ed.). American Psychological Association.
Bauer, P. C., & Landesvatter, C. (2023). Writing a reproducible paper with RStudio and quarto. https://doi.org/10.31219/osf.io/ur4xn
Bergstrom, C. T., & West, J. D. (2021). Calling bullshit: The art of skepticism in a data-driven world. Penguin Books.
Bryan, J. (2023). Happy git and GitHub for the useR. https://happygitwithr.com/
Chivers, T., & Chivers, D. (2021). How to read numbers: A guide to statistics in the news (and knowing when to trust them). Weidenfeld & Nicolson.
Cochrane, J. (2005). Writing tips for Ph. D. students. online. https://www.johnhcochrane.com/s/phd_paper_writing.pdf
Davenport, T. H., & Patil, D. (2012). Data scientist: The sexiest job of the 21st century. Harvard Business Review, 90(5), 70–76.
Dougherty, J., & Ilyankou, I. (2021). Hands-on data visualization interactive storytelling from spreadsheets to code. Accessed January 30, 2023; O’Reilly. https://handsondataviz.org/
Ellenberg, J. (2015). How not to be wrong: The power of mathematical thinking. Penguin Books.
Fitzgerald, S. P. (2002). Decision making. Capstone Publishing.
Gandrud, C. (2020). Reproducible research with r and r studio (3rd ed.). Chapman; Hall/CRC.
Halbritter, A., & Telford, R. J. (2023). Version control with git and GitHub. https://biostats-r.github.io/biostats/github/
Harford, T. (2020). How to make the world add up: Ten rules for thinking differently about numbers. The Bridge Street Press.
Hite, S. (1976). The hite report. A nationwide study of female sexuality. New York: Dell.
Huber, S. (2024a). How to use R for data science: Lecture notes. https://hubchev.github.io/ds/
Huber, S. (2024b). Managerial economics: Lecture notes. https://hubchev.github.io/me/
Huber, S. (2024c). Quantitative methods: Lecture notes. https://hubchev.github.io/qm/
Huber, S., & Rust, C. (2016). Calculate travel time and distance with OpenStreetMap data using the open source routing machine (OSRM). The Stata Journal, 16(2), 416–423.
Huff, D. (1954). How to lie with statistics. WW Norton & company.
Huntington-Klein, N. (2022). The effect: An introduction to research design and causality. Accessed January 30, 2023; CRC Press. https://theeffectbook.net
Jones, B. (2020). Avoiding data pitfalls: How to steer clear of common blunders when working with data and presenting analysis and visualizations. John Wiley & Sons.
Martin, R. (2007). How successful leaders think. Harvard Business Review, 85(6), 71–81. https://hbr.org/2007/06/how-successful-leaders-think
Nikolov, P. (2023). Writing tips for crafting effective economics research papers – 2023-2024 edition (Discussion Paper Series 16276). Institute of Labor Economics (IZA). https://hdl.handle.net/10419/278974
Spiegelhalter, D. (2019). The art of statistics: Learning from data. Penguin UK.
Starmer, J. (2022). The StatQuest illustrated guide to machine learning. Independently published.
Strunk Jr., W., & White, E. B. (1999). The elements of style (4th ed.). Pearson.
Telford, R. J. (2024). Enough markdown to write a thesis. https://biostats-r.github.io/biostats/quarto/
Vaughan, D. (2020). Analytical skills for AI and data science. O’Reilly Media.
Wickham, H., & Grolemund, G. (2023). R for data science (2e). https://r4ds.hadley.nz/
Wikipedia. (2024). Survivorship bias. https://en.wikipedia.org/wiki/Survivorship_bias
Wooldridge, J. M. (2002). Introductory econometrics: A modern approach. In Delhi: Cengage Learnng (2nd ed.). South-Western.
Xie, Y., Allaire, J. J., & Grolemund, G. (2018). R markdown: The definitive guide. Chapman; Hall/CRC.
Xie, Y., Dervieux, C., & Riederer, E. (2020). R markdown cookbook. Chapman; Hall/CRC.
Zinsser, W. (2016). On writing well: The classic guide to writing nonfiction. In New York, NY (30th Anniversary, Paperback Reprint). Harper Perennial.