References

Bandiera, O., Barankay, I., & Rasul, I. (2011). Field experiments with firms. Journal of Economic Perspectives, 25(3), 63–82.
Békés, G., & Kézdi, G. (2021). Data analysis for business, economics, and policy. Cambridge University Press.
Bergstrom, C. T., & West, J. D. (2021). Calling bullshit: The art of skepticism in a data-driven world. Penguin Books.
Bickel, P. J., Hammel, E. A., & O’Connell, J. W. (1975). Sex bias in graduate admissions: Data from Berkeley: Measuring bias is harder than is usually assumed, and the evidence is sometimes contrary to expectation. Science, 187(4175), 398–404.
Bleakley, H., & Lin, J. (2012). Portage and path dependence. The Quarterly Journal of Economics, 127(2), 587–644.
Card, D., & Krueger, A. B. (1994). Minimum wages and employment: A case study of the fast-food industry in new jersey and pennsylvania. The American Economic Review, 84(4), 772–793.
Chivers, T., & Chivers, D. (2021). How to read numbers: A guide to statistics in the news (and knowing when to trust them). Weidenfeld & Nicolson.
Cinelli, C., Forney, A., & Pearl, J. (2022). A crash course in good and bad controls. Sociological Methods & Research, 53(3), 1071–1104. https://doi.org/10.1177/00491241221099552
Cunningham, S. (2021). Causal inference: The mixtape. Accessed January 30, 2023; Yale University Press. https://mixtape.scunning.com/
Curtis, L. H., Hoffman, M. N., Califf, R. M., & Hammill, B. G. (2021). Life expectancy and voting patterns in the 2020 US presidential election. SSM-Population Health, 15, 100840.
Davis, D. R., & Weinstein, D. E. (2002). Bones, bombs, and break points: The geography of economic activity. American Economic Review, 92(5), 1269–1289. http://ideas.repec.org/a/aea/aecrev/v92y2002i5p1269-1289.html
Fehr, E., & Goette, L. (2007). Do workers work more if wages are high? Evidence from a randomized field experiment. American Economic Review, 97(1), 298–317.
Feynman, R. P. (1985). Surely you’re joking, Mr. Feynman!: Adventures of a curious character. W.W. Norton.
Hanck, C., Arnold, M., Gerber, A., & Schmelzer, M. (2020). Introduction to econometrics with R. University of Duisburg-Essen. www.econometrics-with-r.org
Harford, T. (2020). How to make the world add up: Ten rules for thinking differently about numbers. The Bridge Street Press.
Harrison, G. W., & List, J. A. (2004). Field experiments. Journal of Economic Literature, 42(4), 1009–1055.
Hite, S. (1976). The hite report. A nationwide study of female sexuality. New York: Dell.
Huber, S. (2024). How to use R for data science: Lecture notes. https://hubchev.github.io/ds/
Huff, D. (1954). How to lie with statistics. WW Norton & company.
Huntington-Klein, N. (2022). The effect: An introduction to research design and causality. Accessed January 30, 2023; CRC Press. https://theeffectbook.net
Hurston, Z. N. (2010). Dust tracks on a road. HarperCollins.
Illowsky, B., & Dean, S. (2018). Introductory statistics. Openstax. https://openstax.org/details/books/introductory-statistics
Jones, B. (2020). Avoiding data pitfalls: How to steer clear of common blunders when working with data and presenting analysis and visualizations. John Wiley & Sons.
Keele, L. (2015). The statistics of causal inference: A view from political methodology. Political Analysis, 23(3), 313–335.
Lane, D. M. (2023). Introduction to statistics: Online statistics education: A multimedia course of study. Accessed January 30, 2023; Online Statistics Education: A Multimedia Course of Study. http://onlinestatbook.com
Lippert, G., & Sapy, B. (2003). Relation between the domestic dogs’ well-being and life expectancy statistical essay: Essay for the Prince Laurent Foundation Price. https://www.cavalierhealth.org/images/Lippert_Sapy_Domestic_Dogs_Life_Expectancy.pdf
Martin, R. (2007). How successful leaders think. Harvard Business Review, 85(6), 71–81. https://hbr.org/2007/06/how-successful-leaders-think
Matthews, R. (2000). Storks deliver babies (p= 0.008). Teaching Statistics, 22(2), 36–38.
Neal, B. (2020). Introduction to causal inference from a machine learning perspective: Course lecture notes. Accessed January 30, 2023. https://www.bradyneal.com/Introduction_to_Causal_Inference-Dec17_2020-Neal.pdf
Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S. D., Breckler, S. J., Buck, S., Chambers, C. D., Chin, G., Christensen, G., et al. (2015). Promoting an open research culture. Science, 348(6242), 1422–1425.
Paldam, M. (2021). Methods used in economic research: An empirical study of trends and levels. Economics, 15(1), 28–42.
Peng, R. D. (2011). Reproducible research in computational science. Science, 334(6060), 1226–1227.
Sieweke, J., & Santoni, S. (2020). Natural experiments in leadership research: An introduction, review, and guidelines. The Leadership Quarterly, 31(1), 101338.
Spiegelhalter, D. (2019). The art of statistics: Learning from data. Penguin UK.
Taddy, M. (2019). Business data science: Combining machine learning and economics to optimize, automate, and accelerate business decisions (1st ed.). McGraw Hill Education.
The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel. (2002). Nobel prize outreach AB 2024. Fri. 15 nov 2024. https://www.nobelprize.org/prizes/economic-sciences/2002/summary/
Weymar, P. (1955). Konrad Adenauer: Die autorisierte Biographie. Kindler.
Wikipedia. (2024). Survivorship bias. https://en.wikipedia.org/wiki/Survivorship_bias
Wysocki, A. C., Lawson, K. M., & Rhemtulla, M. (2022). Statistical control requires causal justification. Advances in Methods and Practices in Psychological Science, 5(2).