5  Kickstart

Ever got a kick that actually moved you forward? Well, let’s kickstart your R adventure by walking you through a typical data analysis workflow in R, covering everything from setting up your environment to performing data analysis and visualization. Along the way, we’ll also tackle some common troubleshooting to smooth out any bumps in the road. Please don’t worry if you don’t understand some lines of code. You will learn that later on, however, you hopefully will get a sense of what it is like to work with a command line based program.

5.1 Analysing the association of weight and the price of cars

Before we start, we need to ensure that all necessary libraries are installed and loaded. We use the pacman package for convenient package management.

# Install and load required libraries
# Installs 'pacman' if not already available, which is used for package management
if (!require(pacman)) install.packages("pacman")
  
# Unload all previously loaded packages to start fresh
suppressMessages(pacman::p_unload(all))
  
# Load necessary packages for data manipulation, cleaning, and visualization
pacman::p_load(
  tidyverse, # A suite of packages designed for data science that includes tools for data manipulation, plotting, and more.
  haven,     # Used for importing and exporting data with SPSS, Stata, and SAS formats.
  janitor,   # Provides functions for examining and cleaning data, such as `clean_names()` and `tabyl()`.
  WDI,       # Facilitates downloading data from the World Bank's World Development Indicators database.
  wbstats    # Provides an interface to the World Bank's APIs for a comprehensive range of data sets.
)
  
# Set the working directory to a project-specific folder
setwd("~/Dropbox/hsf/courses/dsr")
  
# Clear the current environment of any objects
rm(list = ls())

Now, let us load the dataset from a Stata file (auto.dta) and explore its basic properties.

# Load data from a Stata file available online
auto <- read_dta("http://www.stata-press.com/data/r18/auto.dta")
# 'auto': Dataset contains information about different car models

# Display basic information about the dataset
ncol(auto)  # Number of columns
[1] 12
nrow(auto)  # Number of rows
[1] 74
dim(auto)   # Dimensions of the dataset
[1] 74 12
names(auto) # Names of variables
 [1] "make"         "price"        "mpg"          "rep78"        "headroom"    
 [6] "trunk"        "weight"       "length"       "turn"         "displacement"
[11] "gear_ratio"   "foreign"     
head(auto)  # First few rows
# A tibble: 6 × 12
  make         price   mpg rep78 headroom trunk weight length  turn displacement
  <chr>        <dbl> <dbl> <dbl>    <dbl> <dbl>  <dbl>  <dbl> <dbl>        <dbl>
1 AMC Concord   4099    22     3      2.5    11   2930    186    40          121
2 AMC Pacer     4749    17     3      3      11   3350    173    40          258
3 AMC Spirit    3799    22    NA      3      12   2640    168    35          121
4 Buick Centu…  4816    20     3      4.5    16   3250    196    40          196
5 Buick Elect…  7827    15     4      4      20   4080    222    43          350
6 Buick LeSab…  5788    18     3      4      21   3670    218    43          231
# ℹ 2 more variables: gear_ratio <dbl>, foreign <dbl+lbl>
tail(auto)  # Last few rows
# A tibble: 6 × 12
  make         price   mpg rep78 headroom trunk weight length  turn displacement
  <chr>        <dbl> <dbl> <dbl>    <dbl> <dbl>  <dbl>  <dbl> <dbl>        <dbl>
1 Toyota Coro…  5719    18     5      2      11   2670    175    36          134
2 VW Dasher     7140    23     4      2.5    12   2160    172    36           97
3 VW Diesel     5397    41     5      3      15   2040    155    35           90
4 VW Rabbit     4697    25     4      3      15   1930    155    35           89
5 VW Scirocco   6850    25     4      2      16   1990    156    36           97
6 Volvo 260    11995    17     5      2.5    14   3170    193    37          163
# ℹ 2 more variables: gear_ratio <dbl>, foreign <dbl+lbl>
summary(auto) # Summary statistics for each column
     make               price            mpg            rep78      
 Length:74          Min.   : 3291   Min.   :12.00   Min.   :1.000  
 Class :character   1st Qu.: 4220   1st Qu.:18.00   1st Qu.:3.000  
 Mode  :character   Median : 5006   Median :20.00   Median :3.000  
                    Mean   : 6165   Mean   :21.30   Mean   :3.406  
                    3rd Qu.: 6332   3rd Qu.:24.75   3rd Qu.:4.000  
                    Max.   :15906   Max.   :41.00   Max.   :5.000  
                                                    NA's   :5      
    headroom         trunk           weight         length           turn      
 Min.   :1.500   Min.   : 5.00   Min.   :1760   Min.   :142.0   Min.   :31.00  
 1st Qu.:2.500   1st Qu.:10.25   1st Qu.:2250   1st Qu.:170.0   1st Qu.:36.00  
 Median :3.000   Median :14.00   Median :3190   Median :192.5   Median :40.00  
 Mean   :2.993   Mean   :13.76   Mean   :3019   Mean   :187.9   Mean   :39.65  
 3rd Qu.:3.500   3rd Qu.:16.75   3rd Qu.:3600   3rd Qu.:203.8   3rd Qu.:43.00  
 Max.   :5.000   Max.   :23.00   Max.   :4840   Max.   :233.0   Max.   :51.00  
                                                                               
  displacement     gear_ratio       foreign      
 Min.   : 79.0   Min.   :2.190   Min.   :0.0000  
 1st Qu.:119.0   1st Qu.:2.730   1st Qu.:0.0000  
 Median :196.0   Median :2.955   Median :0.0000  
 Mean   :197.3   Mean   :3.015   Mean   :0.2973  
 3rd Qu.:245.2   3rd Qu.:3.353   3rd Qu.:1.0000  
 Max.   :425.0   Max.   :3.890   Max.   :1.0000  
                                                 
glimpse(auto) # Compact display of the structure of the dataset
Rows: 74
Columns: 12
$ make         <chr> "AMC Concord", "AMC Pacer", "AMC Spirit", "Buick Century"…
$ price        <dbl> 4099, 4749, 3799, 4816, 7827, 5788, 4453, 5189, 10372, 40…
$ mpg          <dbl> 22, 17, 22, 20, 15, 18, 26, 20, 16, 19, 14, 14, 21, 29, 1…
$ rep78        <dbl> 3, 3, NA, 3, 4, 3, NA, 3, 3, 3, 3, 2, 3, 3, 4, 3, 2, 2, 3…
$ headroom     <dbl> 2.5, 3.0, 3.0, 4.5, 4.0, 4.0, 3.0, 2.0, 3.5, 3.5, 4.0, 3.…
$ trunk        <dbl> 11, 11, 12, 16, 20, 21, 10, 16, 17, 13, 20, 16, 13, 9, 20…
$ weight       <dbl> 2930, 3350, 2640, 3250, 4080, 3670, 2230, 3280, 3880, 340…
$ length       <dbl> 186, 173, 168, 196, 222, 218, 170, 200, 207, 200, 221, 20…
$ turn         <dbl> 40, 40, 35, 40, 43, 43, 34, 42, 43, 42, 44, 43, 45, 34, 4…
$ displacement <dbl> 121, 258, 121, 196, 350, 231, 304, 196, 231, 231, 425, 35…
$ gear_ratio   <dbl> 3.58, 2.53, 3.08, 2.93, 2.41, 2.73, 2.87, 2.93, 2.93, 3.0…
$ foreign      <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
print(auto, n = Inf) # Print all rows of the dataset
# A tibble: 74 × 12
   make        price   mpg rep78 headroom trunk weight length  turn displacement
   <chr>       <dbl> <dbl> <dbl>    <dbl> <dbl>  <dbl>  <dbl> <dbl>        <dbl>
 1 AMC Concord  4099    22     3      2.5    11   2930    186    40          121
 2 AMC Pacer    4749    17     3      3      11   3350    173    40          258
 3 AMC Spirit   3799    22    NA      3      12   2640    168    35          121
 4 Buick Cent…  4816    20     3      4.5    16   3250    196    40          196
 5 Buick Elec…  7827    15     4      4      20   4080    222    43          350
 6 Buick LeSa…  5788    18     3      4      21   3670    218    43          231
 7 Buick Opel   4453    26    NA      3      10   2230    170    34          304
 8 Buick Regal  5189    20     3      2      16   3280    200    42          196
 9 Buick Rivi… 10372    16     3      3.5    17   3880    207    43          231
10 Buick Skyl…  4082    19     3      3.5    13   3400    200    42          231
11 Cad. Devil… 11385    14     3      4      20   4330    221    44          425
12 Cad. Eldor… 14500    14     2      3.5    16   3900    204    43          350
13 Cad. Sevil… 15906    21     3      3      13   4290    204    45          350
14 Chev. Chev…  3299    29     3      2.5     9   2110    163    34          231
15 Chev. Impa…  5705    16     4      4      20   3690    212    43          250
16 Chev. Mali…  4504    22     3      3.5    17   3180    193    31          200
17 Chev. Mont…  5104    22     2      2      16   3220    200    41          200
18 Chev. Monza  3667    24     2      2       7   2750    179    40          151
19 Chev. Nova   3955    19     3      3.5    13   3430    197    43          250
20 Dodge Colt   3984    30     5      2       8   2120    163    35           98
21 Dodge Dipl…  4010    18     2      4      17   3600    206    46          318
22 Dodge Magn…  5886    16     2      4      17   3600    206    46          318
23 Dodge St. …  6342    17     2      4.5    21   3740    220    46          225
24 Ford Fiesta  4389    28     4      1.5     9   1800    147    33           98
25 Ford Musta…  4187    21     3      2      10   2650    179    43          140
26 Linc. Cont… 11497    12     3      3.5    22   4840    233    51          400
27 Linc. Mark… 13594    12     3      2.5    18   4720    230    48          400
28 Linc. Vers… 13466    14     3      3.5    15   3830    201    41          302
29 Merc. Bobc…  3829    22     4      3       9   2580    169    39          140
30 Merc. Coug…  5379    14     4      3.5    16   4060    221    48          302
31 Merc. Marq…  6165    15     3      3.5    23   3720    212    44          302
32 Merc. Mona…  4516    18     3      3      15   3370    198    41          250
33 Merc. XR-7   6303    14     4      3      16   4130    217    45          302
34 Merc. Zeph…  3291    20     3      3.5    17   2830    195    43          140
35 Olds 98      8814    21     4      4      20   4060    220    43          350
36 Olds Cutl …  5172    19     3      2      16   3310    198    42          231
37 Olds Cutla…  4733    19     3      4.5    16   3300    198    42          231
38 Olds Delta…  4890    18     4      4      20   3690    218    42          231
39 Olds Omega   4181    19     3      4.5    14   3370    200    43          231
40 Olds Starf…  4195    24     1      2      10   2730    180    40          151
41 Olds Toron… 10371    16     3      3.5    17   4030    206    43          350
42 Plym. Arrow  4647    28     3      2      11   3260    170    37          156
43 Plym. Champ  4425    34     5      2.5    11   1800    157    37           86
44 Plym. Hori…  4482    25     3      4      17   2200    165    36          105
45 Plym. Sapp…  6486    26    NA      1.5     8   2520    182    38          119
46 Plym. Vola…  4060    18     2      5      16   3330    201    44          225
47 Pont. Cata…  5798    18     4      4      20   3700    214    42          231
48 Pont. Fire…  4934    18     1      1.5     7   3470    198    42          231
49 Pont. Gran…  5222    19     3      2      16   3210    201    45          231
50 Pont. Le M…  4723    19     3      3.5    17   3200    199    40          231
51 Pont. Phoe…  4424    19    NA      3.5    13   3420    203    43          231
52 Pont. Sunb…  4172    24     2      2       7   2690    179    41          151
53 Audi 5000    9690    17     5      3      15   2830    189    37          131
54 Audi Fox     6295    23     3      2.5    11   2070    174    36           97
55 BMW 320i     9735    25     4      2.5    12   2650    177    34          121
56 Datsun 200   6229    23     4      1.5     6   2370    170    35          119
57 Datsun 210   4589    35     5      2       8   2020    165    32           85
58 Datsun 510   5079    24     4      2.5     8   2280    170    34          119
59 Datsun 810   8129    21     4      2.5     8   2750    184    38          146
60 Fiat Strada  4296    21     3      2.5    16   2130    161    36          105
61 Honda Acco…  5799    25     5      3      10   2240    172    36          107
62 Honda Civic  4499    28     4      2.5     5   1760    149    34           91
63 Mazda GLC    3995    30     4      3.5    11   1980    154    33           86
64 Peugeot 604 12990    14    NA      3.5    14   3420    192    38          163
65 Renault Le…  3895    26     3      3      10   1830    142    34           79
66 Subaru       3798    35     5      2.5    11   2050    164    36           97
67 Toyota Cel…  5899    18     5      2.5    14   2410    174    36          134
68 Toyota Cor…  3748    31     5      3       9   2200    165    35           97
69 Toyota Cor…  5719    18     5      2      11   2670    175    36          134
70 VW Dasher    7140    23     4      2.5    12   2160    172    36           97
71 VW Diesel    5397    41     5      3      15   2040    155    35           90
72 VW Rabbit    4697    25     4      3      15   1930    155    35           89
73 VW Scirocco  6850    25     4      2      16   1990    156    36           97
74 Volvo 260   11995    17     5      2.5    14   3170    193    37          163
# ℹ 2 more variables: gear_ratio <dbl>, foreign <dbl+lbl>

The data seems to be a cross-section of cars. Let us check if the variable make identifies each line uniquely:

# Check for duplicate entries based on the 'make' variable
auto |>
  get_dupes(make)
No duplicate combinations found of: make
# A tibble: 0 × 13
# ℹ 13 variables: make <chr>, dupe_count <int>, price <dbl>, mpg <dbl>,
#   rep78 <dbl>, headroom <dbl>, trunk <dbl>, weight <dbl>, length <dbl>,
#   turn <dbl>, displacement <dbl>, gear_ratio <dbl>, foreign <dbl+lbl>

Indeed, the variable make has no duplicates. Now, let’s make and save some graphical visualizations:

# Create and display a scatter plot of car price versus weight
plot_weight_price <- ggplot(auto, aes(x = weight, y = price)) +
  geom_point()
plot_weight_price

# Save the plot to a file
ggsave("fig/plot_weight_price.png", plot = plot_weight_price, dpi = 300)
Saving 7 x 5 in image
# Create a scatter plot with a linear regression line of price vs weight
plot_weight_price_fit <- ggplot(auto, aes(x = weight, y = price)) +
  geom_point() +
  geom_smooth(method = lm, se = FALSE)  # 'lm' denotes linear model, 'se' is standard error
plot_weight_price_fit
`geom_smooth()` using formula = 'y ~ x'

# Save the plot to a file
ggsave("fig/plot_weight_price_fit.png", plot = plot_weight_price_fit, dpi = 300)
Saving 7 x 5 in image
`geom_smooth()` using formula = 'y ~ x'

Let us perform a linear regression to quantify the impact of weight on price:

# Perform a linear regression to analyze the relationship between weight and price
reg_result <- lm(price ~ weight , data = auto)
summary(reg_result) # Display the regression results

Call:
lm(formula = price ~ weight, data = auto)

Residuals:
    Min      1Q  Median      3Q     Max 
-3341.9 -1828.3  -624.1  1232.1  7143.7 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)   -6.7074  1174.4296  -0.006    0.995    
weight         2.0441     0.3768   5.424 7.42e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2502 on 72 degrees of freedom
Multiple R-squared:  0.2901,    Adjusted R-squared:  0.2802 
F-statistic: 29.42 on 1 and 72 DF,  p-value: 7.416e-07

5.2 Accessing World Bank’s World Development Indicators

The World Wide Web is a treasure trove of data, and most major databases offer researchers direct download options. Numerous user-supplied packages are available for seamless access to such data. In this section, I present two popular packages that facilitate the downloading of data from the World Bank’s World Development Indicators:

WDI (World Development Indicators) Package - Official CRAN package documentation: WDI on CRAN - Source code on GitHub: WDI GitHub Repository

wbstats (World Bank Statistics) Package - Official CRAN package documentation: wbstats on CRAN - Source code on GitHub: wbstats GitHub Repository

Now, let’s download some GDP data and explore how to manipulate it. This exercise will demonstrate practical applications of the tools.

# Search for GDP indicators and display the first 10
WDIsearch("gdp")[1:10, ]
                indicator                                                 name
712        5.51.01.10.gdp                                Per capita GDP growth
714       6.0.GDP_current                                      GDP (current $)
715        6.0.GDP_growth                                GDP growth (annual %)
716           6.0.GDP_usd                                GDP (constant 2005 $)
717    6.0.GDPpc_constant GDP per capita, PPP (constant 2011 international $) 
1557    BG.GSR.NFSV.GD.ZS                         Trade in services (% of GDP)
1558 BG.KAC.FNEI.GD.PP.ZS          Gross private capital flows (% of GDP, PPP)
1559    BG.KAC.FNEI.GD.ZS               Gross private capital flows (% of GDP)
1560 BG.KLT.DINV.GD.PP.ZS      Gross foreign direct investment (% of GDP, PPP)
1561    BG.KLT.DINV.GD.ZS           Gross foreign direct investment (% of GDP)
# Retrieve GDP per capita data for specified countries and years
df_WDI <- WDI(
  indicator = "NY.GDP.PCAP.KD",
  country = c("MX", "CA", "US"),
  start = 1960,
  end = 2012
)

# Plot GDP per capita over time for the specified countries
ggplot(df_WDI, aes(year, NY.GDP.PCAP.KD, color = country)) +
  geom_line() +
  xlab("Year") +
  ylab("GDP per capita")

# Retrieve GDP per capita data for specified countries and years using the wbstats package
df_wb <- wb_data(
  indicator = "NY.GDP.PCAP.KD",
  country = c("MX", "CA", "US"),
  start = 1960,
  end = 2012,
  return_wide = TRUE
)

# Plot GDP per capita over time for the specified countries
ggplot(df_wb, aes(date, NY.GDP.PCAP.KD, color = country)) +
  geom_line() +
  xlab("Year") +
  ylab("GDP per capita (constant 2010 US$)")

The latter graph appears empty. Why? Let’s take a closer look at the data to identify any discrepancies that might explain this issue:

# Look at the data types year and date are different:
glimpse(df_WDI)
Rows: 159
Columns: 5
$ country        <chr> "Canada", "Canada", "Canada", "Canada", "Canada", "Cana…
$ iso2c          <chr> "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "…
$ iso3c          <chr> "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN",…
$ year           <int> 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2…
$ NY.GDP.PCAP.KD <dbl> 42320.64, 42043.64, 41164.34, 40376.42, 42067.57, 42106…
glimpse(df_wb)
Rows: 159
Columns: 9
$ iso2c          <chr> "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "…
$ iso3c          <chr> "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN",…
$ country        <chr> "Canada", "Canada", "Canada", "Canada", "Canada", "Cana…
$ date           <dbl> 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1…
$ NY.GDP.PCAP.KD <dbl> 15432.47, 15605.52, 16455.75, 17007.69, 17800.86, 18585…
$ unit           <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ obs_status     <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ footnote       <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ last_updated   <date> 2024-11-13, 2024-11-13, 2024-11-13, 2024-11-13, 2024-1…

The answer is: A lineplot with a character variable (date is <chr>) on the x-axis does not work!

Now, let us manipulate the df_wb data so that the two dataset are equal:

df_wb_cln <- df_wb |>
  # Convert 'date' in df_wb from character to integer
  mutate(year = as.integer(date)) |>
  # Since 'year' has been created, remove the original 'date' column
  select(-date) |>
  # Relocate columns to organize the data frame
  relocate(country, iso2c, iso3c, year, NY.GDP.PCAP.KD)

glimpse(df_WDI)
Rows: 159
Columns: 5
$ country        <chr> "Canada", "Canada", "Canada", "Canada", "Canada", "Cana…
$ iso2c          <chr> "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "…
$ iso3c          <chr> "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN",…
$ year           <int> 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2…
$ NY.GDP.PCAP.KD <dbl> 42320.64, 42043.64, 41164.34, 40376.42, 42067.57, 42106…
glimpse(df_wb_cln)
Rows: 159
Columns: 9
$ country        <chr> "Canada", "Canada", "Canada", "Canada", "Canada", "Cana…
$ iso2c          <chr> "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "…
$ iso3c          <chr> "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN",…
$ year           <int> 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1…
$ NY.GDP.PCAP.KD <dbl> 15432.47, 15605.52, 16455.75, 17007.69, 17800.86, 18585…
$ unit           <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ obs_status     <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ footnote       <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ last_updated   <date> 2024-11-13, 2024-11-13, 2024-11-13, 2024-11-13, 2024-1…

Now it works:

# Plot GDP per capita over time for the specified countries
ggplot(df_wb_cln, aes(year, NY.GDP.PCAP.KD, color = country)) +
  geom_line() +
  xlab("Year") +
  ylab("GDP per capita (constant 2010 US$)")

Solution

The script uses the following functions: aes, as.integer, c, dim, geom_line, geom_point, geom_smooth, get_dupes, ggplot, ggsave, glimpse, head, lm, mutate, names, ncol, nrow, print, read_dta, relocate, select, setwd, summary, tail, wb, WDI, WDIsearch, xlab, ylab.

# This script demonstrates a typical data analysis workflow in R
# ---------------------------------------------------------------

# Install and load required libraries
# Installs 'pacman' if not already available, which is used for package management
if (!require(pacman)) install.packages("pacman")

# Unload all previously loaded packages to start fresh
suppressMessages(pacman::p_unload(all))

# Load necessary packages for data manipulation, cleaning, and visualization
pacman::p_load(
  tidyverse, # A suite of packages designed for data science that includes tools for data manipulation, plotting, and more.
  haven, # Used for importing and exporting data with SPSS, Stata, and SAS formats.
  janitor, # Provides functions for examining and cleaning data, such as `clean_names()` and `tabyl()`.
  WDI, # Facilitates downloading data from the World Bank's World Development Indicators database.
  wbstats # Provides an interface to the World Bank's APIs for a comprehensive range of data sets.
)

# Set the working directory to a project-specific folder
setwd("~/Dropbox/hsf/courses/dsr")

# Clear the current environment of any objects
rm(list = ls())

# ---------------------------------------------------------------

# Load data from a Stata file available online
auto <- read_dta("http://www.stata-press.com/data/r8/auto.dta")
# 'auto': Dataset contains information about different car models

# Display basic information about the dataset
ncol(auto) # Number of columns
nrow(auto) # Number of rows
dim(auto) # Dimensions of the dataset
names(auto) # Names of variables
head(auto) # First few rows
tail(auto) # Last few rows
summary(auto) # Summary statistics for each column
glimpse(auto) # Compact display of the structure of the dataset
print(auto, n = Inf) # Print all rows of the dataset

# Check for duplicate entries based on the 'make' variable
auto |>
  get_dupes(make)

# Create and display a scatter plot of car price versus weight
plot_weight_price <- ggplot(auto, aes(x = weight, y = price)) +
  geom_point()
plot_weight_price

# Save the plot to a file
ggsave("fig/plot_weight_price.png", plot = plot_weight_price, dpi = 300)

# Create a scatter plot with a linear regression line of price vs weight
plot_weight_price_fit <- ggplot(auto, aes(x = weight, y = price)) +
  geom_point() +
  geom_smooth(method = lm, se = FALSE) # 'lm' denotes linear model, 'se' is standard error
plot_weight_price_fit

# Save the plot to a file
ggsave("fig/plot_weight_price_fit.png", plot = plot_weight_price_fit, dpi = 300)

# Perform a linear regression to analyze the relationship between weight and price
reg_result <- lm(price ~ weight, data = auto)
summary(reg_result) # Display the regression results

# Load and demonstrate usage of World Development Indicators (WDI) data
# Two different packages can help here:
# WDI:
# --- https://cran.r-project.org/web/packages/WDI/WDI.pdf
# --- https://github.com/vincentarelbundock/WDI
# wbstats:
# --- https://cran.r-project.org/web/packages/wbstats/wbstats.pdf
# --- https://github.com/gshs-ornl/wbstats
# ?WDI  # Access documentation for the WDI package
# ?wbstats # # Access documentation for the wbstats package

# Search for GDP indicators and display the first 10
WDIsearch("gdp")[1:10, ]

# Retrieve GDP per capita data for specified countries and years
df_WDI <- WDI(
  indicator = "NY.GDP.PCAP.KD",
  country = c("MX", "CA", "US"),
  start = 1960,
  end = 2012
)

# Plot GDP per capita over time for the specified countries
ggplot(df_WDI, aes(year, NY.GDP.PCAP.KD, color = country)) +
  geom_line() +
  xlab("Year") +
  ylab("GDP per capita")

# Retrieve GDP per capita data for specified countries and years using the wbstats package
df_wb <- wb(
  indicator = "NY.GDP.PCAP.KD",
  country = c("MX", "CA", "US"),
  start = 1960,
  end = 2012,
  return_wide = TRUE
)

# Plot GDP per capita over time for the specified countries
ggplot(df_wb, aes(date, NY.GDP.PCAP.KD, color = country)) +
  geom_line() +
  xlab("Year") +
  ylab("GDP per capita (constant 2010 US$)")

# !!! This does not work !!!
# Why?

# Look at the data types year and date are different:
glimpse(df_WDI)
glimpse(df_wb)

# Answer: A lineplot with a character variable on the x-axis does not work!

# make the two dataframe equal:
df_wb_cln <- df_wb |>
  # Convert 'date' in df_wb from character to integer
  mutate(year = as.integer(date)) |>
  # Since 'year' has been created, remove the original 'date' column
  select(-date) |>
  # Relocate columns to organize the data frame
  relocate(country, iso2c, iso3c, year, NY.GDP.PCAP.KD)

glimpse(df_WDI)
glimpse(df_wb_cln)

# Now it works:
# Plot GDP per capita over time for the specified countries
ggplot(df_wb_cln, aes(year, NY.GDP.PCAP.KD, color = country)) +
  geom_line() +
  xlab("Year") +
  ylab("GDP per capita (constant 2010 US$)")

suppressMessages(pacman::p_unload(
  tidyverse, # A suite of packages designed for data science that includes tools for data manipulation, plotting, and more.
  haven, # Used for importing and exporting data with SPSS, Stata, and SAS formats.
  janitor, # Provides functions for examining and cleaning data, such as `clean_names()` and `tabyl()`.
  WDI, # Facilitates downloading data from the World Bank's World Development Indicators database.
  wbstats # Provides an interface to the World Bank's APIs for a comprehensive range of data sets.
))
# This script demonstrates a typical data analysis workflow in R
# ---------------------------------------------------------------

# Install and load required libraries
# Installs 'pacman' if not already available, which is used for package management
if (!require(pacman)) install.packages("pacman")

# Unload all previously loaded packages to start fresh
suppressMessages(pacman::p_unload(all))

# Load necessary packages for data manipulation, cleaning, and visualization
pacman::p_load(
  tidyverse, # A suite of packages designed for data science that includes tools for data manipulation, plotting, and more.
  haven, # Used for importing and exporting data with SPSS, Stata, and SAS formats.
  janitor, # Provides functions for examining and cleaning data, such as `clean_names()` and `tabyl()`.
  WDI, # Facilitates downloading data from the World Bank's World Development Indicators database.
  wbstats # Provides an interface to the World Bank's APIs for a comprehensive range of data sets.
)

# Set the working directory to a project-specific folder
setwd("~/Dropbox/hsf/courses/dsr")

# Clear the current environment of any objects
rm(list = ls())

# ---------------------------------------------------------------

# Load data from a Stata file available online
auto <- read_dta("http://www.stata-press.com/data/r8/auto.dta")
# 'auto': Dataset contains information about different car models

# Display basic information about the dataset
ncol(auto) # Number of columns
[1] 12
nrow(auto) # Number of rows
[1] 74
dim(auto) # Dimensions of the dataset
[1] 74 12
names(auto) # Names of variables
 [1] "make"         "price"        "mpg"          "rep78"        "headroom"    
 [6] "trunk"        "weight"       "length"       "turn"         "displacement"
[11] "gear_ratio"   "foreign"     
head(auto) # First few rows
# A tibble: 6 × 12
  make         price   mpg rep78 headroom trunk weight length  turn displacement
  <chr>        <dbl> <dbl> <dbl>    <dbl> <dbl>  <dbl>  <dbl> <dbl>        <dbl>
1 AMC Concord   4099    22     3      2.5    11   2930    186    40          121
2 AMC Pacer     4749    17     3      3      11   3350    173    40          258
3 AMC Spirit    3799    22    NA      3      12   2640    168    35          121
4 Buick Centu…  4816    20     3      4.5    16   3250    196    40          196
5 Buick Elect…  7827    15     4      4      20   4080    222    43          350
6 Buick LeSab…  5788    18     3      4      21   3670    218    43          231
# ℹ 2 more variables: gear_ratio <dbl>, foreign <dbl+lbl>
tail(auto) # Last few rows
# A tibble: 6 × 12
  make         price   mpg rep78 headroom trunk weight length  turn displacement
  <chr>        <dbl> <dbl> <dbl>    <dbl> <dbl>  <dbl>  <dbl> <dbl>        <dbl>
1 Toyota Coro…  5719    18     5      2      11   2670    175    36          134
2 VW Dasher     7140    23     4      2.5    12   2160    172    36           97
3 VW Diesel     5397    41     5      3      15   2040    155    35           90
4 VW Rabbit     4697    25     4      3      15   1930    155    35           89
5 VW Scirocco   6850    25     4      2      16   1990    156    36           97
6 Volvo 260    11995    17     5      2.5    14   3170    193    37          163
# ℹ 2 more variables: gear_ratio <dbl>, foreign <dbl+lbl>
summary(auto) # Summary statistics for each column
     make               price            mpg            rep78      
 Length:74          Min.   : 3291   Min.   :12.00   Min.   :1.000  
 Class :character   1st Qu.: 4220   1st Qu.:18.00   1st Qu.:3.000  
 Mode  :character   Median : 5006   Median :20.00   Median :3.000  
                    Mean   : 6165   Mean   :21.30   Mean   :3.406  
                    3rd Qu.: 6332   3rd Qu.:24.75   3rd Qu.:4.000  
                    Max.   :15906   Max.   :41.00   Max.   :5.000  
                                                    NA's   :5      
    headroom         trunk           weight         length           turn      
 Min.   :1.500   Min.   : 5.00   Min.   :1760   Min.   :142.0   Min.   :31.00  
 1st Qu.:2.500   1st Qu.:10.25   1st Qu.:2250   1st Qu.:170.0   1st Qu.:36.00  
 Median :3.000   Median :14.00   Median :3190   Median :192.5   Median :40.00  
 Mean   :2.993   Mean   :13.76   Mean   :3019   Mean   :187.9   Mean   :39.65  
 3rd Qu.:3.500   3rd Qu.:16.75   3rd Qu.:3600   3rd Qu.:203.8   3rd Qu.:43.00  
 Max.   :5.000   Max.   :23.00   Max.   :4840   Max.   :233.0   Max.   :51.00  
                                                                               
  displacement     gear_ratio       foreign      
 Min.   : 79.0   Min.   :2.190   Min.   :0.0000  
 1st Qu.:119.0   1st Qu.:2.730   1st Qu.:0.0000  
 Median :196.0   Median :2.955   Median :0.0000  
 Mean   :197.3   Mean   :3.015   Mean   :0.2973  
 3rd Qu.:245.2   3rd Qu.:3.353   3rd Qu.:1.0000  
 Max.   :425.0   Max.   :3.890   Max.   :1.0000  
                                                 
glimpse(auto) # Compact display of the structure of the dataset
Rows: 74
Columns: 12
$ make         <chr> "AMC Concord", "AMC Pacer", "AMC Spirit", "Buick Century"…
$ price        <dbl> 4099, 4749, 3799, 4816, 7827, 5788, 4453, 5189, 10372, 40…
$ mpg          <dbl> 22, 17, 22, 20, 15, 18, 26, 20, 16, 19, 14, 14, 21, 29, 1…
$ rep78        <dbl> 3, 3, NA, 3, 4, 3, NA, 3, 3, 3, 3, 2, 3, 3, 4, 3, 2, 2, 3…
$ headroom     <dbl> 2.5, 3.0, 3.0, 4.5, 4.0, 4.0, 3.0, 2.0, 3.5, 3.5, 4.0, 3.…
$ trunk        <dbl> 11, 11, 12, 16, 20, 21, 10, 16, 17, 13, 20, 16, 13, 9, 20…
$ weight       <dbl> 2930, 3350, 2640, 3250, 4080, 3670, 2230, 3280, 3880, 340…
$ length       <dbl> 186, 173, 168, 196, 222, 218, 170, 200, 207, 200, 221, 20…
$ turn         <dbl> 40, 40, 35, 40, 43, 43, 34, 42, 43, 42, 44, 43, 45, 34, 4…
$ displacement <dbl> 121, 258, 121, 196, 350, 231, 304, 196, 231, 231, 425, 35…
$ gear_ratio   <dbl> 3.58, 2.53, 3.08, 2.93, 2.41, 2.73, 2.87, 2.93, 2.93, 3.0…
$ foreign      <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
print(auto, n = Inf) # Print all rows of the dataset
# A tibble: 74 × 12
   make        price   mpg rep78 headroom trunk weight length  turn displacement
   <chr>       <dbl> <dbl> <dbl>    <dbl> <dbl>  <dbl>  <dbl> <dbl>        <dbl>
 1 AMC Concord  4099    22     3      2.5    11   2930    186    40          121
 2 AMC Pacer    4749    17     3      3      11   3350    173    40          258
 3 AMC Spirit   3799    22    NA      3      12   2640    168    35          121
 4 Buick Cent…  4816    20     3      4.5    16   3250    196    40          196
 5 Buick Elec…  7827    15     4      4      20   4080    222    43          350
 6 Buick LeSa…  5788    18     3      4      21   3670    218    43          231
 7 Buick Opel   4453    26    NA      3      10   2230    170    34          304
 8 Buick Regal  5189    20     3      2      16   3280    200    42          196
 9 Buick Rivi… 10372    16     3      3.5    17   3880    207    43          231
10 Buick Skyl…  4082    19     3      3.5    13   3400    200    42          231
11 Cad. Devil… 11385    14     3      4      20   4330    221    44          425
12 Cad. Eldor… 14500    14     2      3.5    16   3900    204    43          350
13 Cad. Sevil… 15906    21     3      3      13   4290    204    45          350
14 Chev. Chev…  3299    29     3      2.5     9   2110    163    34          231
15 Chev. Impa…  5705    16     4      4      20   3690    212    43          250
16 Chev. Mali…  4504    22     3      3.5    17   3180    193    31          200
17 Chev. Mont…  5104    22     2      2      16   3220    200    41          200
18 Chev. Monza  3667    24     2      2       7   2750    179    40          151
19 Chev. Nova   3955    19     3      3.5    13   3430    197    43          250
20 Dodge Colt   3984    30     5      2       8   2120    163    35           98
21 Dodge Dipl…  4010    18     2      4      17   3600    206    46          318
22 Dodge Magn…  5886    16     2      4      17   3600    206    46          318
23 Dodge St. …  6342    17     2      4.5    21   3740    220    46          225
24 Ford Fiesta  4389    28     4      1.5     9   1800    147    33           98
25 Ford Musta…  4187    21     3      2      10   2650    179    43          140
26 Linc. Cont… 11497    12     3      3.5    22   4840    233    51          400
27 Linc. Mark… 13594    12     3      2.5    18   4720    230    48          400
28 Linc. Vers… 13466    14     3      3.5    15   3830    201    41          302
29 Merc. Bobc…  3829    22     4      3       9   2580    169    39          140
30 Merc. Coug…  5379    14     4      3.5    16   4060    221    48          302
31 Merc. Marq…  6165    15     3      3.5    23   3720    212    44          302
32 Merc. Mona…  4516    18     3      3      15   3370    198    41          250
33 Merc. XR-7   6303    14     4      3      16   4130    217    45          302
34 Merc. Zeph…  3291    20     3      3.5    17   2830    195    43          140
35 Olds 98      8814    21     4      4      20   4060    220    43          350
36 Olds Cutl …  5172    19     3      2      16   3310    198    42          231
37 Olds Cutla…  4733    19     3      4.5    16   3300    198    42          231
38 Olds Delta…  4890    18     4      4      20   3690    218    42          231
39 Olds Omega   4181    19     3      4.5    14   3370    200    43          231
40 Olds Starf…  4195    24     1      2      10   2730    180    40          151
41 Olds Toron… 10371    16     3      3.5    17   4030    206    43          350
42 Plym. Arrow  4647    28     3      2      11   3260    170    37          156
43 Plym. Champ  4425    34     5      2.5    11   1800    157    37           86
44 Plym. Hori…  4482    25     3      4      17   2200    165    36          105
45 Plym. Sapp…  6486    26    NA      1.5     8   2520    182    38          119
46 Plym. Vola…  4060    18     2      5      16   3330    201    44          225
47 Pont. Cata…  5798    18     4      4      20   3700    214    42          231
48 Pont. Fire…  4934    18     1      1.5     7   3470    198    42          231
49 Pont. Gran…  5222    19     3      2      16   3210    201    45          231
50 Pont. Le M…  4723    19     3      3.5    17   3200    199    40          231
51 Pont. Phoe…  4424    19    NA      3.5    13   3420    203    43          231
52 Pont. Sunb…  4172    24     2      2       7   2690    179    41          151
53 Audi 5000    9690    17     5      3      15   2830    189    37          131
54 Audi Fox     6295    23     3      2.5    11   2070    174    36           97
55 BMW 320i     9735    25     4      2.5    12   2650    177    34          121
56 Datsun 200   6229    23     4      1.5     6   2370    170    35          119
57 Datsun 210   4589    35     5      2       8   2020    165    32           85
58 Datsun 510   5079    24     4      2.5     8   2280    170    34          119
59 Datsun 810   8129    21     4      2.5     8   2750    184    38          146
60 Fiat Strada  4296    21     3      2.5    16   2130    161    36          105
61 Honda Acco…  5799    25     5      3      10   2240    172    36          107
62 Honda Civic  4499    28     4      2.5     5   1760    149    34           91
63 Mazda GLC    3995    30     4      3.5    11   1980    154    33           86
64 Peugeot 604 12990    14    NA      3.5    14   3420    192    38          163
65 Renault Le…  3895    26     3      3      10   1830    142    34           79
66 Subaru       3798    35     5      2.5    11   2050    164    36           97
67 Toyota Cel…  5899    18     5      2.5    14   2410    174    36          134
68 Toyota Cor…  3748    31     5      3       9   2200    165    35           97
69 Toyota Cor…  5719    18     5      2      11   2670    175    36          134
70 VW Dasher    7140    23     4      2.5    12   2160    172    36           97
71 VW Diesel    5397    41     5      3      15   2040    155    35           90
72 VW Rabbit    4697    25     4      3      15   1930    155    35           89
73 VW Scirocco  6850    25     4      2      16   1990    156    36           97
74 Volvo 260   11995    17     5      2.5    14   3170    193    37          163
# ℹ 2 more variables: gear_ratio <dbl>, foreign <dbl+lbl>
# Check for duplicate entries based on the 'make' variable
auto |>
  get_dupes(make)
No duplicate combinations found of: make
# A tibble: 0 × 13
# ℹ 13 variables: make <chr>, dupe_count <int>, price <dbl>, mpg <dbl>,
#   rep78 <dbl>, headroom <dbl>, trunk <dbl>, weight <dbl>, length <dbl>,
#   turn <dbl>, displacement <dbl>, gear_ratio <dbl>, foreign <dbl+lbl>
# Create and display a scatter plot of car price versus weight
plot_weight_price <- ggplot(auto, aes(x = weight, y = price)) +
  geom_point()
plot_weight_price

# Save the plot to a file
ggsave("fig/plot_weight_price.png", plot = plot_weight_price, dpi = 300)
Saving 7 x 5 in image
# Create a scatter plot with a linear regression line of price vs weight
plot_weight_price_fit <- ggplot(auto, aes(x = weight, y = price)) +
  geom_point() +
  geom_smooth(method = lm, se = FALSE) # 'lm' denotes linear model, 'se' is standard error
plot_weight_price_fit
`geom_smooth()` using formula = 'y ~ x'

# Save the plot to a file
ggsave("fig/plot_weight_price_fit.png", plot = plot_weight_price_fit, dpi = 300)
Saving 7 x 5 in image
`geom_smooth()` using formula = 'y ~ x'
# Perform a linear regression to analyze the relationship between weight and price
reg_result <- lm(price ~ weight, data = auto)
summary(reg_result) # Display the regression results

Call:
lm(formula = price ~ weight, data = auto)

Residuals:
    Min      1Q  Median      3Q     Max 
-3341.9 -1828.3  -624.1  1232.1  7143.7 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)   -6.7074  1174.4296  -0.006    0.995    
weight         2.0441     0.3768   5.424 7.42e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2502 on 72 degrees of freedom
Multiple R-squared:  0.2901,    Adjusted R-squared:  0.2802 
F-statistic: 29.42 on 1 and 72 DF,  p-value: 7.416e-07
# Load and demonstrate usage of World Development Indicators (WDI) data
# Two different packages can help here:
# WDI:
# --- https://cran.r-project.org/web/packages/WDI/WDI.pdf
# --- https://github.com/vincentarelbundock/WDI
# wbstats:
# --- https://cran.r-project.org/web/packages/wbstats/wbstats.pdf
# --- https://github.com/gshs-ornl/wbstats
# ?WDI  # Access documentation for the WDI package
# ?wbstats # # Access documentation for the wbstats package

# Search for GDP indicators and display the first 10
WDIsearch("gdp")[1:10, ]
                indicator                                                 name
712        5.51.01.10.gdp                                Per capita GDP growth
714       6.0.GDP_current                                      GDP (current $)
715        6.0.GDP_growth                                GDP growth (annual %)
716           6.0.GDP_usd                                GDP (constant 2005 $)
717    6.0.GDPpc_constant GDP per capita, PPP (constant 2011 international $) 
1557    BG.GSR.NFSV.GD.ZS                         Trade in services (% of GDP)
1558 BG.KAC.FNEI.GD.PP.ZS          Gross private capital flows (% of GDP, PPP)
1559    BG.KAC.FNEI.GD.ZS               Gross private capital flows (% of GDP)
1560 BG.KLT.DINV.GD.PP.ZS      Gross foreign direct investment (% of GDP, PPP)
1561    BG.KLT.DINV.GD.ZS           Gross foreign direct investment (% of GDP)
# Retrieve GDP per capita data for specified countries and years
df_WDI <- WDI(
  indicator = "NY.GDP.PCAP.KD",
  country = c("MX", "CA", "US"),
  start = 1960,
  end = 2012
)

# Plot GDP per capita over time for the specified countries
ggplot(df_WDI, aes(year, NY.GDP.PCAP.KD, color = country)) +
  geom_line() +
  xlab("Year") +
  ylab("GDP per capita")

# Retrieve GDP per capita data for specified countries and years using the wbstats package
df_wb <- wb(
  indicator = "NY.GDP.PCAP.KD",
  country = c("MX", "CA", "US"),
  start = 1960,
  end = 2012,
  return_wide = TRUE
)
Warning: `wb()` was deprecated in wbstats 1.0.0.
ℹ Please use `wb_data()` instead.
Warning: `spread_()` was deprecated in tidyr 1.2.0.
ℹ Please use `spread()` instead.
ℹ The deprecated feature was likely used in the wbstats package.
  Please report the issue at <https://github.com/nset-ornl/wbstats/issues>.
# Plot GDP per capita over time for the specified countries
ggplot(df_wb, aes(date, NY.GDP.PCAP.KD, color = country)) +
  geom_line() +
  xlab("Year") +
  ylab("GDP per capita (constant 2010 US$)")
`geom_line()`: Each group consists of only one observation.
ℹ Do you need to adjust the group aesthetic?

# !!! This does not work !!!
# Why?

# Look at the data types year and date are different:
glimpse(df_WDI)
Rows: 159
Columns: 5
$ country        <chr> "Canada", "Canada", "Canada", "Canada", "Canada", "Cana…
$ iso2c          <chr> "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "…
$ iso3c          <chr> "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN",…
$ year           <int> 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2…
$ NY.GDP.PCAP.KD <dbl> 42320.64, 42043.64, 41164.34, 40376.42, 42067.57, 42106…
glimpse(df_wb)
Rows: 159
Columns: 5
$ iso3c          <chr> "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN",…
$ date           <chr> "1960", "1961", "1962", "1963", "1964", "1965", "1966",…
$ iso2c          <chr> "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "…
$ country        <chr> "Canada", "Canada", "Canada", "Canada", "Canada", "Cana…
$ NY.GDP.PCAP.KD <dbl> 15432.47, 15605.52, 16455.75, 17007.69, 17800.86, 18585…
# Answer: A lineplot with a character variable on the x-axis does not work!

# make the two dataframe equal:
df_wb_cln <- df_wb |>
  # Convert 'date' in df_wb from character to integer
  mutate(year = as.integer(date)) |>
  # Since 'year' has been created, remove the original 'date' column
  select(-date) |>
  # Relocate columns to organize the data frame
  relocate(country, iso2c, iso3c, year, NY.GDP.PCAP.KD)

glimpse(df_WDI)
Rows: 159
Columns: 5
$ country        <chr> "Canada", "Canada", "Canada", "Canada", "Canada", "Cana…
$ iso2c          <chr> "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "…
$ iso3c          <chr> "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN",…
$ year           <int> 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2…
$ NY.GDP.PCAP.KD <dbl> 42320.64, 42043.64, 41164.34, 40376.42, 42067.57, 42106…
glimpse(df_wb_cln)
Rows: 159
Columns: 5
$ country        <chr> "Canada", "Canada", "Canada", "Canada", "Canada", "Cana…
$ iso2c          <chr> "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "…
$ iso3c          <chr> "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN",…
$ year           <int> 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1…
$ NY.GDP.PCAP.KD <dbl> 15432.47, 15605.52, 16455.75, 17007.69, 17800.86, 18585…
# Now it works:
# Plot GDP per capita over time for the specified countries
ggplot(df_wb_cln, aes(year, NY.GDP.PCAP.KD, color = country)) +
  geom_line() +
  xlab("Year") +
  ylab("GDP per capita (constant 2010 US$)")

suppressMessages(pacman::p_unload(
  tidyverse, # A suite of packages designed for data science that includes tools for data manipulation, plotting, and more.
  haven, # Used for importing and exporting data with SPSS, Stata, and SAS formats.
  janitor, # Provides functions for examining and cleaning data, such as `clean_names()` and `tabyl()`.
  WDI, # Facilitates downloading data from the World Bank's World Development Indicators database.
  wbstats # Provides an interface to the World Bank's APIs for a comprehensive range of data sets.
))